
On-line supplement: The Turbulence Parameterization Scheme 

The turbulence scheme used in this work is adapted from a more comprehensive 

turbulent transfer scheme currently under development for use in CanAM4. This scheme 

will be documented more fully in a future paper. Here we restrict attention to 

representing down-gradient turbulent transfer processes for cloud-free conditions. 

Throughout this supplement w denotes vertical velocity (rather than wind speed as in the 

main body of the paper). Following a traditional basic approach, vertical fluxes are 

defined in terms of eddy diffusivities as: 
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with  

entmh KKK += Pr/       (A2) 

The first term in (A2) represents the eddy conductivity associated with turbulence 

driven by shear production and convectively active (statically unstable but local) 

buoyancy production. The second term represents the effects of entrainment in the 

capping inversion region of a convectively active boundary layer.  The functional forms 

of the Prandtl number ( Pr )  and entK will be defined below.   

We define the diffusivity for momentum (eddy viscosity for vertical momentum 

transfer) in terms of the turbulent kinetic energy (TKE), denoted as k , as 

2/1)( kRAFK imm l=       (A3) 

The structure function )(RiFm will be specified such that 1)0( =mF .  The constant 

A  and the dissipation length scale ( l ) are specified so as to ensure surface layer 

matching.  

The usual equation for the turbulent kinetic energy (TKE), is written as, (eg 

Lenderink  and Holtslag, 2004): 
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An approach that is qualitatively similar to that of Bretherton and Park (2008) is 

used to represent the terms in the TKE equation. The storage change term on the left side 



of this equation is ignored in favour of a quasi-equilbrium formulation in which the main 

balance is between shear and buoyancy production, dissipation (ε ), and turbulent 

transport ( T ).  

The dissipation term is represented in the usual manner as  
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where, following Lenderink and Holtslag (2004), we take 26.7=B . The transport term is 

specified in a manner that is adapted from the formulation of Bretherton and Park (2008). 

This term is of significant magnitude only in convectively active conditions, as discussed 

further below.  

In near neutral and stably stratified conditions the dominant balance is a local 

equilibrium between shear and buoyancy production and dissipation, except in the 

transition region at the top of a convectively active boundary layer.  The lower boundary 

condition for the TKE in near neutral conditions is  (Lenderink & Holtslag, 2004) 
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where 75.33/2

0 ≅= Bc  and the friction velocity, SKu m=2

* , is independent of height  in 

the surface layer.  

Statically stable conditions ( 0>Ri  )  

For 0>Ri , the Prandtl number formulation of Venayagamoorthy and Stretch 

(2010) (herinafter V&S) is used:  
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Here ∞R is the asymptotic (for ∞→Ri ) value of the flux Richardson number. This 

quantity has an upper bound of unity for turbulent processes in stably stratified 

conditions; V&S recommend 25.0=∞R  and this is the default value used in this study.  

The effects of choosing other values in the range (0.25, 1) are examined as discussed in 

section 5.1. 

In basic local equilibrium where shear production dominates, the TKE equation 

(ignoring storage change, turbulent transport of TKE, and entrainment in the capping 

inversion) is given by 
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Where 222 )()( zVzUS ∂∂+∂∂= . This gives, with the definitions of eddy viscosity and 

dissipation rate given above. 
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As is discussed further below, in near neutral conditions zκ≅l  in the surface 

layer, where the von Karman constant, κ , has the value generally accepted value of 0.4. 

Invoking the lower boundary condition in near neutral conditions gives 2/1

0/1 cA = .  

It is convenient to define a function Pr)/(RiG  such that  

2/12/32 Pr)/1( RiFG m −=     (A11) 

so that the equilibrium eddy viscosity and TKE are, with ( 0,cA ) as defined above, given 

by  
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A constraint on G  is given by the behavior of the normalized momentum flux 

(the ratio of the vertical momentum flux to the TKE, normalized by its value at 0=Ri ): 
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Data from  laboratory experiments, field observations, LES simulations and recent 

theoretical studies  suggest that this quantity decreases with decreasing shear (increasing 

gradient Richardson number) in stable stratification but remains finite for large positive 

values of Ri (Zilitinkevich et al. ,2007; Canuto et al ,2008;Kantha ,2009; Ferrero et al., 

2011 ). Zilitinkevich et al (2008) identify the statically stable regimes where 1.0<Ri  as 

strong mixing regimes where the normalized momentum flux is close to its maximum 

value. However the limiting value for large Ri  is not as well constrained by LES 

simulations, observations or the theoretical second and third moment closure models 

(SMC, TMC). The available published studies suggest values between 0.2 and 0.7.  

We account for the dependence of the normalized vertical momentum flux on Ri  

in a simple empirical way by defining G for stable conditions as: 

Pr)/1))(23(1( 2 RiG −Γ−Γ−= β     (A14) 



Where Pr)/( ∞=Γ RRi . It follows from the definition of the Prandtl number (A7) that this 

quantity has an asymptotic value of unity for large Ri . The second term in the above 

expression rapidly approaches its asymptotic value for 1>Ri .  Choosing 7.=β  provides 

a reasonably good fit to the normalized momentum flux data as displayed in Canuto et al 

(2008) and gives an asymptotic value close to 0.45 while maximizing the normalized 

momentum flux at 0=Ri .   

Matching to the surface layer  

In the surface layer, from Monin-Obukhov similarity,  
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where hm φφ ,  are functions of  Lz /  where L  is the Monin-Obukhov length: 
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As will be seen below, the effects of transport do not cause a substantial departure 

from local equilibrium in the surface layer. Therefore the relevant solutions in that region 

are : 
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The eddy diffusivity is matched to the surface layer by requiring that, in the 

surface layer, the length scale has the form: 
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On the stable side ( 0/;0 >≥ LzRi ) the form for mφ valid in weakly stable 

conditions, as deduced from analyses of tower observations, is 
L

z
m µφ +≅ 1 with 

68.4 ≤≤ µ  being the range that seems to fit data reasonably well (Hogstrom, 1996). 



These empirical formulae are typically valid for weakly stable conditions where Lz /  

does not substantially exceed unity. However we use the formulation of Beljaars and 

Holtslag (1991) which is designed to take into account the fact that the flux Richardson 

number ( Pr/Ri ) remains finite and approaches a limiting value for large values of Ri : 
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with ∞= Ra /1  ; µ=++ )1( cba .  

Beljaars and Holtslag took 1=∞R , 35.0=d , and 5=c  giving 3/2=b  for 

5=µ . We adopt their values of ( dc, ) but allow for the possibility of a lower value of 

∞R  by defining b  more generally as )1/()/1( cRb +−= ∞µ .   

Statically Unstable Conditions ( 0<Ri ) 

In unstable conditions the empirically derived flux profile relations from Dyer 

(1974) are  
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Using these relations implies RiLz −≅− / and the following expression for the 

Prandtl number: 
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We assume that this relationship holds throughout the convectively active 

boundary layer. However, it is also desirable to set a finite lower limit to the Prandtl 

number to ensure that the TKE remains finite in the limit of the shear becoming very 

small in unstable stratification. Cuxart et al (2000), Lenderink & Holtslag (2004) suggest 

that the inverse Prandtl number does not exceed 2 in unstable conditions. Therefore we 

determine the Prandtl number from the above expression but set a lower bound of 0.5 on 

its value. Note that the slope of the Prandtl number dependence on Ri is discontinuous at  

.0=Ri  However, this has a very small effect on the eddy diffusivities.  



In the limit of weak shear such that −∞→Ri  the TKE must become independent 

of the shear and the Prandtl number takes on its limiting value. For the local equilibrium 

solution, noting that l  will be determined so as to be independent of Ri in this limit, this 

implies that 
4/1

RiG ∝ in this limit, also ensuring through (A11) that mF  is independent 

of Ri in this limit. A simple formulation for G  for 0<Ri , defined in a way that merges 

with the stable side formulation and with the implied limiting dependence on 
4/1

Ri , is as 

follows: 
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We have provisionally chosen the value of 1=γ   which ensures that  1≅mGφ  in 

the free convective limit of weak shear with upward buoyancy flux at the surface. 

Dissipation Length Scale and the Ozmidov length in stable conditions  

A traditional definition of the master (dissipation) length scale is the Blackadar 

form, adapted for the formulation for surface layer, defined as 
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where sll  is the length scale in the surface layer as defined in (A20) and ∞l   is an outer 

length scale determined independently as discussed further below. However in stable 

conditions it is common practice to limit l  to ensure that it does not exceed the Ozmidov 

length scale defined as 

2/32/1 −= No εl        (A27)  

An expression for the dissipation length scale ( sl ) that corresponds to the 

Ozmidov length is obtained by using the expression for the dissipation rate with the 

condition 0lll == s  giving  
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This functional dependence on the ratio ( Nk /2/1 ) is the same as for the Deardorff 

length scale that is often invoked as a limiting mixing length scale in stable conditions.  It 

is easily shown that for the local equilibrium solution (in the absence of transport and 

entrainment effects) 
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where  

2/13/23/4 ]Pr)/1(/([ RiGRiY −=  ;  0>Ri    (A30) 

We define 0=Y  for 0≤Ri . It is easily seen that imposing the limit sll ≤  for 

the local equilibrium solution enforces a cut-off of the TKE at a finite value of Ri  

corresponding to 1=Y . Cheng et al., (2004) question invoking this constraint as it 

imposes an artificial  cut off for the TKE and fluxes at 1=Y , as is easily seen by noting 

that if sll =  then A28 and A19 are incompatible with each other for 1>Y unless .0=k  

Any  formulation that imposes A28 as an  upper bound  will  therefore impose a cut-off at 

1=Y . We do not invoke A28 as a strict upper bound on the length scale but will invoke 

it as an asymptotic limit for large values of Y  as 

2

0

22 )1(
Nc

k
QQb +−= ll      (A31) 

where   

2

)1,(

1
1 








−=

YMax
Q       (A32) 

The quadratic form of Q  has been chosen  to ensure a smooth transition at 1=Y . This 

formulation will be modified below to account for the effects of turbulent transport of 

TKE.  

 

Transport  

We have adapted an empirical formulation similar to that proposed by Bretherton 

and Park (2008), which assumes that the vertical mixing effect of the transport term is to 

relax the TKE to a vertically homogeneous state on a time scale that is proportional to the 

turbulent eddy turnover time: 
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where  we will define α  so as to ensure that it is non-zero in a convectively active 

boundary layer and its flanking transition layer but zero elsewhere. The quantity *k  is 



vertically constant and must be chosen so that the vertically integrated transport vanishes. 

We define a convectively active boundary layer as existing when the surface buoyancy 

flux is positive (upward) and it is comprised of the surface layer and higher contiguous 

layers where  1≤Y  at the lower interfaces of the layers. The depth of this layer is 

denoted as h and identified as the depth of the boundary layer.  

We define α  in terms of the exponential growth/decay operator as 
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with the boundary condition that 0=α  at the surface. We choose 0α  as: 

)1(0 Y−=Hα       (A35) 

with the added constraint that 00 =α  if the surface buoyancy flux is not positive 

(upwards). Here H is the Heaviside function, defined as unity when its argument is 

positive and zero otherwise. This definition of 0α  is qualitatively similar to the definition 

of α  used by Bretherton and Park (2008). Our generalization is designed to provide a 

finite  limit of the transport term near the surface and a merging  into the transition layer.  

If the depth, d , is chosen as a fixed quantity (e.g. a fraction of the depth of the boundary 

layer or the depth of the surface layer, if larger), this choice gives the following analytical 

expressions for α  in circumstances where the surface buoyancy flux is upward:  
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where cz  is the lowest level above which 1≥Y . Clearly α  will be close to zero if 

dzc << .  As a result of experimentation we use a fixed value of  md 50= .  

Entrainment 

Motivated by Grenier and Bretherton (2001) (see also Otte& Wyngaard, (2001) 

the quantity entK  is assumed to be non-zero only in the transition layer that includes the 

capping inversion and is assumed to be of the form 
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where the factor Pr)/11( −  is introduced to allow for the fact that in unstable conditions 

( 0<Ri ) and circumstances where the shear is strong, the downward heat transfer will be 

accomplished by the first term of the total eddy conductivity in equation (A2). To see this 

more clearly note that, using the definition of mK , it is easily shown that  
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where sl is as defined in A28.  It is required that the quantity Λ  is non-zero in the 

transition layers at the top of the region affected by transport but is otherwise zero. 

Entrainment is tied to the transport, as suggested by Otte and Wyngaard (2001), 

by choosing 2/3

0* / cαΛ=Λ  where the value of *Λ  is determined empirically to ensure 

that the entrainment flux is realistic for a typical dry convectively active PBL.  

 

The length scale formulation has to be modified to account for the effects of the 

transport and entrainment. With these effects the TKE equation has the solution  
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Where  

Pr)/11(1 2/3

0

2/3

0 −Λ++= ccD α     (A40) 

and Lk   is the local equilibrium solution  in the absence of these effects. 

It is easily seen that 
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The quantity on the left hand side becomes equal to ( )2
ll s  in stable regions 

where transport effects are negligible. The motivation for subtracting off the contribution 

from *k  is that, as will be seen below,  this ensures that the dissipation length is not a 

function of *k . This is desirable to avoid making the dependence of the transport term on 

*k  excessively non-linear.  The right side of equation (49) will be greater than unity if  
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In regions where 0>α  we use a modified definition of the dissipation length 

scale as 
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With the above choices: 
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Where the subscript on Lk denotes evaluation at bll = . Although not producing a cutoff 

of the TKE at a finite value of Y , the formulation (A43)  ensures limitation of the length 

scale and TKE in regions of strong stable stratification.  

We have found it useful to enhance the length scale in the ABL in a manner 

similar to that of Lenderink and Holtslag  (2004) but without the stability dependence 

they introduced. In particular, bl  is defined as: 
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where  

),max( min rzup ll =       (A48a) 
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where we have used m10min =l , m75=∞l , 5.0=r  

Determining *k  

We have specified α  so that it is formally defined everywhere but is close to 

unity only in the convectively active boundary layer. We determine *k  so that the (mass-

weighted) vertical integral of the transport term is zero: 
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This can be written as: 
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where: 
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The integrand in (A50) is seen to be a non-linear function of  *k  through the 

second term in the square-root factor in the expression for W .  This term is likely to be of 

significant magnitude only in the lower part of the convectively active boundary layer 

where we expect that *k  and Lk  will be of similar magnitude.  To obtain a first 

approximation we replace the ratio */ kkL  in this term by )0(/ LL kk and improve upon 

this by iteration.  

Including additional forcing terms in the TKE equation.  

Additional forcing terms could arise from a variety of sources, such as sporadic 

breaking of gravity-waves in stably stratified regions giving rise to enhanced shear 

production. The corresponding additional forcing in the TKE equation is denoted 

symbolically as F  and assumed here independent of the TKE as a first approximation. 

Including this additional buoyancy production term in the steady state TKE equation 

gives rise to a cubic equation for 2/1
k  in which all of the roots are non-zero: 
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Denoting 2/1
kX =  for notational convenience, this equation can be written in the form: 
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Where ELk  is the equilibrium solution in the absence of the forcing and  
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This equation is in a classical form for cubic equations. The physically correct 

roots depend on the sign of the quantity: 

27/4/ 32

* ELkF −=δ     (A57) 

The physically correct solutions are:  
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Clearly, if 0* =F , 6/πθ =  and the solution reverts to the equilibrium solution in 

the absence of forcing as required. However, if the forcing is so strong that 4/2

*F→δ , 

the limiting solution corresponds to a balance between the buoyancy forcing and 

dissipation, as expected from inspection of the TKE equation. The presence of forcing 

complicates determination of *k . An iterative procedure is used in which the first guess is 

the value of *k  appropriate to the unforced solution.  
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